$$C(K, S_t, \tau, \sigma_t, r) = e^{-r\tau} \int_K^{\infty} (S_T - K)^+ f(S_T | S_t, \tau) dQ_{\tau}(S_T).$$
 (1)

$$P(K, S_t, \tau, \sigma_t, r) = e^{-r\tau} \int_0^K (K - S_T)^+ f(S_T | S_t, \tau) dQ_\tau(S_T), \tag{2}$$

$$m = (K/S_t)^{\Psi}, \tag{3}$$

where Ψ is a call/put indicator: it is 1 for call options and -1 for put options. This design accommodates both call and put options with $m = K/S_t$ and $m = S_t/K$, respectively.

$$y(m, \tau, \sigma_t, r) = \sum_{j=1}^{N_h} \left[\sigma_+(b_j^m - me^{w_j^m}) \right] \left[\sigma_+(b_j^\tau + \tau e^{w_j^\tau}) \right]$$

$$\times \left[\sigma_+(b_j^r \pm re^{w_j^r}) \right] \left[\sigma_+(b_j^{\sigma_t} + \sigma_t e^{w_j^{\sigma_t}}) \right], \tag{4}$$

where $\sigma_+()$ is the *softplus* function $\sigma_+(x) = \log(1 + e^x)$. The weights $(w_j^m, w_j^\tau, w_j^r, w_j^{\sigma_t})$ and biases $(b_j^m, b_j^\tau, b_j^r, b_j^{\sigma_t})$ are parameters to be estimated. The + and - in $(b_j^r \pm re^{w_j^r})$ are for call and put options, respectively. The sign in each $\sigma_+()$ function is designed according to specific constraints.

Softmax

$\log(1+e^x)$

Sigmoid

(c1) Convexity in K

Both C and P are convex across K for $\tau \geq 0$. C is monotonically non-increasing with K, whereas P is monotonically non-decreasing with K. Hence, $\frac{\partial C}{\partial K} \leq 0$ and $\frac{\partial P}{\partial K} \geq 0$.

Proof: Constraint (c1). The derivative of a *softplus* function $\sigma_+(x)$ can be obtained as follows:

$$\frac{d\log(1+e^x)}{dx} = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}.$$
 (5)

The function $\frac{1}{1+e^{-x}}$ is called the *sigmoid*, which can also be used as an activation function. We represent it as $\sigma_s = \frac{1}{1+e^{-x}}$ thus $\sigma'_+(x) = \sigma_s(x)$. In this way, constraint (c1) can be written as follows:

$$\frac{\partial y}{\partial m} = \sum_{j=1}^{N_h} \left[\underline{-e^{w_j^m} \sigma_s(b_j^m - me^{w_j^m})} \right] \left[\sigma_+(b_j^\tau - \tau e^{w_j^\tau}) \right] \left[\sigma_+(b_j^r \pm re^{w_j^r}) \right] \times \left[\sigma_+(b_j^{\sigma_t} + \sigma_t e^{w_j^{\sigma_t}}) \right].$$
(6)

$$f(m) = b_{j}^{m} - me^{w_{j}^{m}}$$

 $\frac{\partial}{\partial m} G_{+} (f(m)) = G_{+}' (f(m)) \cdot f'(m)$
 $= G_{+}' (b_{j}^{m} - me^{w_{j}^{m}}) \cdot (-e^{w_{j}^{m}})$

Hence, $\frac{\partial y}{\partial m} \leq 0$. Consider the definition of moneyness, we have the following for call options:

(5)
$$\frac{\partial y}{\partial K} = \frac{\partial y}{\partial m} \frac{\partial m}{\partial K} = \frac{\partial y}{\partial m} \frac{1}{S_t} \le 0.$$
 (7)

Likewise for put options:

$$\frac{\partial y}{\partial K} = \frac{\partial y}{\partial m} \frac{\partial m}{\partial K} = -\frac{\partial y}{\partial m} \frac{S_t}{K^2} \ge 0.$$
 (8)

(c2) Monotonicity in τ Both C and P are non-decreasing with K > 0. Hence, $\frac{\partial C}{\partial \tau} \ge 0$ and $\frac{\partial P}{\partial \tau} \ge 0$.

Proof: Constraint (c2). Similarly, we can express the constraint (c2) for call and put options as follows:

$$\frac{\partial y}{\partial \tau} = \sum_{j=1}^{N_h} \left[\sigma_+(b_j^m - me^{w_j^m}) \right] \left[e^{w_j^\tau} \sigma_s(b_j^\tau + \tau e^{w_j^\tau}) \right] \left[\sigma_+(b_j^r \pm re^{w_j^r}) \right] \\
\times \left[\sigma_+(b_j^{\sigma_t} + \sigma_t e^{w_j^{\sigma_t}}) \right] \ge 0.$$
(9)

(c3) *Strike limit* When $\tau > 0$, $\lim_{K \to \infty} C = 0$ for call options, and $\lim_{K \to 0} P = 0$ for put options.

Proof: Constraint (c3). We have $\lim_{K\to\infty} m = \lim_{K\to\infty} \frac{K}{S_t} = \infty$ for call options, and $\lim_{K\to 0} m = \lim_{K\to 0} \frac{S_t}{K} = \infty$ for put options. Furthermore,

$$\lim_{m \to \infty} \sigma_{+}(b_{j}^{m} - me^{w_{j}^{m}}) = \lim_{m \to \infty} \log\left(1 + e^{(b_{j}^{m} - me^{w_{j}^{m}})}\right)$$
$$= \log\left(1 + e^{-\infty}\right) = 0. \tag{10}$$

- (c4) Boundary conditions $(S_t K)^+ \le C \le S_t$ for call options, and $(K S_t)^+ \le P \le Ke^{-r\tau}$ for put options.
- (c5) Expiry value When $\tau = 0$, $C = (S_t K)^+$ and $P = (K S_t)^+$.

(c6) Constraints (c1), (c3), and (c4) imply that option prices are twice differentiable with respect to K for all $\tau > 0$. Hence, $\frac{\partial^2 C}{\partial K^2} \ge 0$ and $\frac{\partial^2 P}{\partial K^2} \ge 0$.

Proof: Constraint (c6).

$$\frac{\partial^2 y}{\partial K^2} = \frac{\partial^2 y}{\partial m \partial K} = \frac{\partial^2 y}{\partial m^2} \left(\frac{\partial m}{\partial K} \right)^2 + \frac{\partial y}{\partial m} \frac{\partial^2 m}{\partial K^2}.$$

$$\frac{\partial^2 y}{\partial K^2} = \frac{\partial}{\partial K} \left(\frac{\partial y}{\partial M} + \frac{\partial y}{\partial K} + \frac{\partial^2 y}{\partial M} + \frac{\partial^2 + \frac$$

$$\frac{\partial^2 y}{\partial m^2} = \sum_{j=1}^{N_h} \left[e^{2w_j^m} \sigma_s' (b_j^m - m e^{w_j^m}) \right] \left[\sigma_+ (b_j^\tau - \tau e^{w_j^\tau}) \right] \left[\sigma_+ (b_j^r \pm r e^{w_j^r}) \right] \times \left[\sigma_+ (b_j^{\sigma_t} + \sigma_t e^{w_j^{\sigma_t}}) \right], \tag{11}$$

where $\sigma_s'(x) = \sigma_s(x)(1 - \sigma_s(x)) \ge 0$, thus $\frac{\partial^2 y}{\partial m^2} \ge 0$

$$G_{s}(x) = \frac{1}{1 + e^{-x}}, G'_{s}(x) = \frac{e^{-x}}{(1 + e^{-x})^{2}} \ge 0$$

(c6) Constraints (c1), (c3), and (c4) imply that option prices are twice differentiable with respect to K for all $\tau > 0$. Hence, $\frac{\partial^2 C}{\partial K^2} \ge 0$ and $\frac{\partial^2 P}{\partial K^2} \ge 0$.

Proof: Constraint (c6).

$$\frac{\partial^2 y}{\partial K^2} = \frac{\partial^2 y}{\partial m \partial K} = \frac{\partial^2 y}{\partial m^2} \left(\frac{\partial m}{\partial K} \right)^2 + \frac{\partial y}{\partial m} \frac{\partial^2 m}{\partial K^2}.$$

For call options, $\frac{\partial^2 m}{\partial K^2} = 0$, thus:

$$\frac{\partial^2 y}{\partial K^2} = \frac{\partial^2 y}{\partial m^2} \frac{1}{S_t^2} \ge 0.$$

Likewise for put options:

$$\frac{\partial^2 y}{\partial K^2} = \frac{\partial^2 y}{\partial m^2} \frac{S_t^2}{K^4} + \frac{\partial y}{\partial m} \frac{2S_t}{K^3}.$$

Since dividing a positive constant on both sides of an equation does not change the sign of the equation, we divide $\frac{S_t}{K^3}$ on both side of Eq. (14) and let $\mathcal{F}(y,m)=m\frac{\partial^2 y}{\partial m^2}+2\frac{\partial y}{\partial m}$ for K>0 and $S_t>0$. To determine the value of $\mathcal{F}(y,m)$, we approximate it by the second-order Taylor expansion and obtain the following:

$$\begin{split} \mathcal{F}(y,m) &= 2y' + my'' \approx f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 \\ &= y'(a)2 + y''(a)m \approx f'(a)(m-a) + f''(a)\frac{(m-a)^2}{2}. \end{split}$$

Finally, to approximate the value of $\mathcal{F}(y,m)$, we solve two equations m-a=2 and $m=\frac{(m-a)^2}{2}$ and obtain a=0 and m=2. Therefore, $\mathcal{F}(y,m)\approx y(2)\geq 0$. This completes the proof of constraints (c1), (c2), (c3) and (c6). \square