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m = (K/S¢)", (3)

where W is a call/put indicator: it is 1 for call options and -1
for put options. This design accommodates both call and put op-
tions with m = K/S; and m = S; /K, respectively.
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where o,() is the softplus function o.(x) =log(1+¢€*). The

weights (W, wi, w', w}’f) and biases (bT', b, D', bj.’f ) are parame-

.
ters to be estimated. The + and - in (bg. +re"J) are for call and put

options, respectively. The sign in each o, () function is designed
according to specific constraints.
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(c1) Convexity in K

Both C and P are convex across K for 7 > 0. C is mono-
tonically non-increasing with K, whereas P is monotonically
non-decreasing with K. Hence, g% <0 and % > 0.

Proof: Constraint (c1). The derivative of a softplus function o (x)
can be obtained as follows:

dlog(l+e¢) € 1 (5)

dx T 146X 14ex

The function IJ:? is called the sigmoid, which can also be used as

1

_— : : ;
an activation function. We represent it as o5 = Tre¥ thus o (x) =

os(x). In this way, constraint (c1) can be written as follows:
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Hence, % < 0. Consider the definition of moneyness, we have the

following for call options:
dy dyom dy 1

9K = dm 9K ~ ams, = O
Likewise for put options:
dy dy dm 9y S =i}
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O
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(c2) Monotonicity in T
Both C and P are non-decreasing with K > 0. Hence, 2€ > 0

ap ot
and 3 = 0.

Proof: Constraint (c2). Similarly, we can express the constraint

(c2) for call and put options as follows:
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(c3) Strike limit
When 7 > 0, limg_, ., C =0 for call options, and limg_,oP =
0 for put options.

Proof: Constraint (c3). We have limy_ . m = limg_, % — oo for
call options, and limg_,om = limg_.g % = oo for put options. Fur-
thermore,

lim o (b} - me"’ ) = lim log (1 + p(bf—me) ))

m—o0

log (1+e) =0. (10)



(c4) Boundary conditions
(St —K)* <C < S for call options, and (K —S¢)* <P <Ke™'"
for put options.

(c5) Expiry value
When 7 =0, C=(5—-K)"and P= (K —=S;)".



(c6) Constraints (c1), (¢3), and (c4) imply that option prices are
twice differentiable with respect to K for all T > 0. Hence,

ﬂ>0.
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Proof: Constraint (c6).
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where a/(x) = 05(x)(1 — 05(x)) > 0, thus 3—2’2 >0
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(c6) Constraints (c1), (¢3), and (c4) imply that option prices are
twice differentiable with respect to K for all T > 0. Hence,

dK2 >0 and 2 dK2 > 0.
Proof: Constraint (c6). Since dividing a positive constant on both sides of an equation
does not change the sign of the equatlon we divide 2 F on both
0%y 0%y d%y (dm)\, dy 9°m e of dl 6 q
2:8 81(:8m2 5K +3—mW' side of Eq. (14) and let F(y,m) = mm ﬁ or.K>0_ar1 St >
K m 0. To determine the value of F(y,m), we approximate it by the
second-order Taylor expansion and obtain the following:
- "
For call options, aK2 =0, thus: Fm) =2y +my” ~ (@) (x— a) + f2( ) (x — a)?
2 2 m— a)2
Py _9y1 ., Y @2+y'@m~ f@m-a)+ @)
OK2 ~ am? 57 ~
Likewise for put options: Finally, to approximate the value of F(y, m), we solve two equa-

5 5 ) tionsm—a=2and m= M and obtain a = 0 and m = 2. There-
0%y _ 0y S_t dy 25 fore, F(y,m) ~ y(2) > 0. This completes the proof of constraints
0KZ ~— am2K4 "~ 9m K3~ (c1), (€2), (c3) and (c6). O




